Cellular properties of principal neurons in the rat entorhinal cortex. II. The medial entorhinal cortex.
نویسندگان
چکیده
Principal neurons in different medial entorhinal cortex (MEC) layers show variations in spatial modulation that stabilize between 15 and 30 days postnatally. These in vivo variations are likely due to differences in intrinsic membrane properties and integrative capacities of neurons. The latter depends on inputs and thus potentially on the morphology of principal neurons. In this comprehensive study, we systematically compared the morphological and physiological characteristics of principal neurons in all MEC layers of newborn rats before and after weaning. We recorded simultaneously from up to four post-hoc morphologically identified MEC principal neurons in vitro. Neurons in L(ayer) I-LIII have dendritic and axonal arbors mainly in superficial layers, and LVI neurons mainly in deep layers. The dendritic and axonal trees of part of LV neurons diverge throughout all layers. Physiological properties of principal neurons differ between layers. In LII, most neurons have a prominent sag potential, resonance and membrane oscillations. Neurons in LIII and LVI fire relatively regular, and lack sag potentials and membrane oscillations. LV neurons show the most prominent spike-frequency adaptation and highest input resistance. The data indicate that adult-like principal neuron types can be differentiated early on during postnatal development. The results of the accompanying paper, in which principal neurons in the lateral entorhinal cortex (LEC) were described (Canto and Witter,2011), revealed that significant differences between LEC and MEC exist mainly in LII neurons. We therefore systematically analyzed changes in LII biophysical properties along the mediolateral axis of MEC and LEC. There is a gradient in properties typical for MEC LII neurons. These properties are most pronounced in medially located neurons and become less apparent in more laterally positioned ones. This gradient continues into LEC, such that in LEC medially positioned neurons share some properties with adjacent MEC cells.
منابع مشابه
The effect of Gallic acid on prenatal entorhinal cortex and CA1/CA3 hippocampal areas in trimethyltin intoxication rat
Background: Prenatal intoxication with trimethyletin (TMT) induces widespread neuronal death in the central nervous system by inducing oxidative stress. The aim of this study was to evaluate the antioxidant effect of gallic acid (GA) on the neuronal density of the entorhinal cortex, hippocampal pyramidal cells and oxidative stress parameters in the fetal forebrain following TMT intoxication. ...
متن کاملCellular properties of principal neurons in the rat entorhinal cortex. I. The lateral entorhinal cortex.
The lateral entorhinal cortex (LEC) provides a major cortical input to the hippocampal formation, equaling that of the medial entorhinal cortex (MEC). To understand the functional contributions made by LEC, basic knowledge of individual neurons, in the context of the intrinsic network, is needed. The aim of this study is to compare physiological and morphological properties of principal neurons...
متن کاملPhysiological Properties of Neurons in Bat Entorhinal Cortex Exhibit an Inverse Gradient along the Dorsal-Ventral Axis Compared to Entorhinal Neurons in Rat.
UNLABELLED Medial entorhinal cortex (MEC) grid cells exhibit firing fields spread across the environment on the vertices of a regular tessellating triangular grid. In rodents, the size of the firing fields and the spacing between the firing fields are topographically organized such that grid cells located more ventrally in MEC exhibit larger grid fields and larger grid-field spacing compared wi...
متن کاملNeuroprotective Effect of Gallic Acid on Memory Deficit and Content of BDNF in Brain Entorhinal Cortex of Rat’s Offspring in Uteroplacental Insufficiency Model
Introduction: Uteroplacental insufficiency (UPI) causes neurodevelopmental deficits affecting the intrauterine growth restricted (IUGR) offspring. This study aimed to analyze the effects of Gallic acid (GA) on memory deficit and brain-derived neurotrophic factor (BDNF) content in entorhinal cortex of UPI rat models. Methods: In this experimental study, 40 pregnant Wistar rats were randomly div...
متن کاملThe effect of intraperitoneal injection of N6-cyclohexyladenosine, a selective adenosine A1 receptor agonist, on entorhinal cortex-kindled seizures in rats
The effects of intraperitoneal injection of N6-cyclohexyladenosine (CHA, a selective adenosine A1 receptor agonist) and 8-cyclopenthyle-I-3-dimethylexanthine (CPT, a selective adenosine A1 receptor antagonist) on entorhinal cortex-kindled seizures were investigated. Fully entorhinal cortex-kindled rats received normal saline (control), CHA (0.06, 0.12 and 0.25 mg/kg) or CPT (0.06 and 0.12 mg/kg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hippocampus
دوره 22 6 شماره
صفحات -
تاریخ انتشار 2012